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Definition:
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Causal :  {h[n]} = 0     for n < 0
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Example :

Consider two identical systems : 

{h[n]} = (1/2)n , n ³ 0

h1[n]
x[n] y[n]

h2[n]

h1[n] = h2[n] = (1/2)n , n ³ 0
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Response :

y[n] = (x[n]* h1[n] )* h2[n]  

Taking the z transform we have:

Y(z) = X(z)H1(z) H2(z)
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Suppose Now : x[n] = 1  for   n ³ 0
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Therefore now the response of the 
system for the given Input would be :
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Stability Theorem :

The system is said to be stable if and only if :
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Recall :
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Follows : |y[n]| is bounded if and only if :
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Stable Causal Systems :

Example :
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Poles : p1, p2

Follows : h[n] = C0d[n] + C1p1
n + C2p2

n

If  h[n] ® 0,  as  n ®¥ then :

Implies ® if |pi| < 1 for all i
h[n] ® 0,  as  n ®¥
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p1 p2

|z| = 1

ROC includes the unit circle |z| = 1 for a stable 
{|pi| < 1} causal systems.

Formal Definition: A causal system with a 
rational transfer function H(z) is stable if all the 
poles (pi) of H(z) are located inside the unit 
circle. 
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Example :
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if |p| < 1
as n ®¥

Stable even for repeated poles if |pi| < 1

Marginally Stable
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is not satisfied.

For finite N is bounded 

pole is on |z| = 1
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Complex Conjugate poles on the unit 
circle :
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is satisfied for finite N.

Multiple poles repeated on the Unit circle 
will make the system to be unstable.
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1.  The trapezoidal integration formula can be represented as an IIR 
digital filter represented by a difference equation given by

y[n] = y[ n – 1 ] +  (1/2) { x[n] + x[ n – 1 ] }
with y[-1] = 0. Determine the transfer function of the above
filter.

Soln) Given, the difference equation representing trapezoidal 
integration

formula as:
y[n] = y[ n – 1 ] +  (1/2) { x[n] + x[ n – 1 ] }

Taking the z-transform of the above equation gives that:
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2. Let H(z) be the transfer function of a causal stable LTI discrete-time 
system. Let G(z) be the transfer function obtained by replacing z-1 in 
H(z) with α + z-1/ 1+ α z-1.  Show that G(1)=H(1) and G(-1)=H(-1).

Soln) Given that the transfer function G(z) is obtained from H(z)
by replacing 
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b)    G(-1) = H(-1)  

When z = -1,

  H(-1)                    
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3. Determine the transfer function of a causal stable LTI discrete-time
system described by the following difference equation:

y[n] = 5x[n] + 5x[n-1] + 0.4x[n-2] + 0.32x[n-3]
- 0.5y[n-1] + 0.34y[n-2] + 0.08y[n-3]

Express the transfer function in a factored form and sketch its pole-zero
plot. Is the system BIBO stable?

Soln)The difference equation of a casual LTI discrete system is:
y[n] = 5x[n] + 5x[n-1] + 0.4x[n-2] + 0.32x[n-3]

- 0.5y[n-1] + 0.34y[n-2] + 0.08y[n-3]

Taking z-transform of the above equation:
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The system is stable since all the poles lie inside the unit circle

The pole zero plot of the transfer function using Matlab:
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4. Using z-transform methods, determine the explicit expression 
For the impulse response h(n) of a causal LTI discrete-time system
which develops an output y[n]=4(0.75)n µ[n] for an input 
x[n]=3(0.25)n µ[n].

Soln)

Given that the system response                                   

for an input

n][4(0.75)  y[n] nµ=

n][3(0.25)  x[n] nµ=

Taking z transform of each of the equation, we get
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Therefore, the transfer function H(z) is:
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